CHROM. 9140

Note

Chromatography and electrophoresis techniques for demonstrating the presence of cellular N⁶-(Δ^2 -isopentenyl)-adenosine-3'-monophosphate

EDWARD R. SARGENT and PAUL F. AGRIS

Division of Biological Sciences, Tucker Hall, University of Missouri, Columbia, Mo. 65201 (U.S.A.) (First received December 8th, 1975; revised manuscript received February 23rd, 1976)

Both in whole animals and in mammalian cell culture N⁶-(Δ^2 -isopentenyl)adenosine (i⁶A), has been reported to have antitumor activity and to exert a transient, suppressive action upon growth¹⁻¹³. This hypermodified nucleoside has been found in the cells of many plants as the free mononucleoside^{14,15} and recently in human and mouse cells as the free mononucleotide¹⁶. The natural function of i⁶A or its nucleotide is unknown, except in the case of plants, where the hypermodified nucleoside acts as a hormone cytokinin¹⁵. In addition, it is known that i⁶Ap and its 2-methylthio derivatives (ms²i⁶Ap) occur in specific species of tRNA, *i.e.*, those species responding to codons beginning with uridine, in bacteria, yeast, plants and animals^{14,16,17}. Therefore, it is important to be able to demonstrate and quantitate the natural presence of the nucleotide in less than microgram amounts in cells¹⁶ and cellular tRNA¹⁴, and the conversion of exogenously added i⁶A to i⁶Ap¹¹⁻¹³ in order to elucidate its function.

Analysis of i⁶A has been accomplished by taking advantage of the hydrophobic nature of the nucleoside and its biological activity as a plant hormone. Separation and detection of chemically synthesized and naturally occurring isopentenyl-adenosines have been accomplished by Sephadex LH-20 column chromatography of nucleoside mixtures in organic solvents followed by bioassay of the column fractions through their ability to stimulate tobacco callus growth in culture¹⁵. Unfortunately, this analytical method requires milligram quantities of material for. e.g., the detection of i⁶A in tRNA and does not yield a quantitative evaluation of i⁶A relative to the amounts of other nucleosides that may be present. A radioactive analysis of ³²Plabeled i⁶Ap has been shown to be both sensitive and quantitative¹⁶. The nucleotide has chromatographic and electrophoretic properties distinctively different from those of the nucleoside. Flat-plate electrophoretic methods for the separation of nucleic acid components including some modified nucleotides but not i6Ap have been reviewed by Smith¹⁸. The advantage of flat-plate versus liquid-immersed paper electrophoresis is in the assessability of buffer solutions. This communication reports in detail sensitive methods of thin-layer chromatography (TLC) and liquid-immersed paper electrophoresis that have been used to demonstrate the presence of i⁶Ap as a free cytoplasmic mononucleotide¹⁶ and tRNA component^{19,20} within cells in culture and in human leukemia cells²¹.

MATERIALS AND METHODS

Materials

Mouse (RAG) cell line was the gift of Dr. F. Ruddle (Yale University). N⁶-(Δ^2 -Isopentenyl)-adenosine (i⁶A) and standard nucleotides, AMP, ADP, ATP, CMP, GMP and UMP, were obtained from Sigma (St. Louis, Mo., U.S.A.); carrier-free [³²P]phosphoric acid from New England Nuclear (Boston, Mass., U.S.A.); minimal essential medium (Eagle's with Earls's salts) and horse serum from GIBCO (Grand Island, N.Y., U.S.A.); TLC plates (250 μ m thick, microgranular cellulose and silica gel) from Analtech (Newark, Del., U.S.A.); and Whatman No. 1 and DE-81 chromatography paper from H. Reeve Angel (Clifton, N.J., U.S.A.).

Analysis of i⁶Ap

The RAG cell line was maintained in minimal essential medium containing [³²P]phosphate (0.3 mCi/ml). Transfer RNA was isolated and its nucleotide content was analyzed by ribonuclease digestion and two-dimensional TLC as described previously¹⁹.

After the TLC plates had been subjected to autoradiography, the i⁶Ap, identified by its distinctive chromatographic mobilities^{14,17,19}, was scraped from the cellulose plates and separated from the cellulose by eluting it with ethanol. This i⁶Ap was then used for the determination of the mobilities of the compound in other chromatography systems and in electrophoresis. Standard nucleotides, i⁶A, and the radioactive i6Ap isolated from the cell tRNA were then subjected to TLC in the following seven solvent systems: (1) isobutyric acid-concentrated ammonium hydroxide-glass-distilled water (70:1.15:28.85); (2) tert-butanol-concentrated HClglass-distilled water (70:15:15); (3) isopropanol-concentrated HCl-glass-distilled water (70:10:20); (4) n-propanol-concentrated ammonium hydroxide-glass-distilled water (55:10:35); (5) n-butanol-concentrated glacial acetic acid-glass-distilled water (40:10:10); (6) n-butanol-glass-distilled water (85:15); (7) glass-distilled water. Cellulose plates were used in the first six systems and silica gel in the seventh. The mobilities of each compound were then determined by the quenching of UV light (254 mm) to locate movement of the standard nucleotides and i⁶A and by autoradiography to determine movement of the radioactive i⁶Ap (see Table I).

The same compounds were run in two electrophoretic systems using Whatman No. 1 (cellulose) and DE-81 (DEAE-cellulose) papers in each of the following systems: (1) 630 ml 89.1% formic acid, diluted to 8 l with water, and resulting in a solution of pH 1.7, 1500 V; (2) 40 ml pyridine, 400 ml glacial acetic acid, diluted to 8 l (with water) that was 1 mM in EDTA and resulting in a solution of pH 3.5, 1500 V. A dye, Xylene Cyanol FF, was used in the electrophoresis and the voltage was applied until it had moved 15 cm in the pH 3.5 system or 16 cm in the pH 1.7 system. Again nucleotide migrations were detected using the quenching of UV light and autoradiography. The R_F values were recorded for the electrophoresis in reference to AMP (see Table II).

RESULTS AND DISCUSSION

Radioactive tRNA labeled with [32P]phosphate has been isolated in microgram

nucleotides have subsequently been analyzed¹⁹⁻²¹. However, definite detection of the presence of modified nucleotides, particularly i⁶Ap as the free mononucleotides within the cell cytoplasm or as tRNA components, is of importance for understanding their function and the metabolism of tRNA.

The sensitivity conveyed by the [³²P]phosphate label¹⁹ and the chromatographic and electrophoretic analyses described here have enabled us to detect the presence of nanogram quantities of i⁶Ap in the cytoplasms of 10⁶ cells or in microgram quantities of tRNA isolated from mammalian cell lines and human leukemia cells^{16,19-21}. Chromatographic mobilities of ³²P-labeled i⁶Ap isolated from ³²P-labeled tRNA as described in Materials and methods, and other nucleic acid components are shown in Table I. Migration of i⁶Ap in the seven systems was consistent with the combined hydrophobicity of the isopentenyl group and the hydrophilicity of the phosphate group. The corresponding nucleoside, i⁶A, migrated faster than the nucleotides in the six primarily organic systems 1–6, but slower in the completely aqueous system⁷. The presence of the 3'-monophosphate group on the hypermodified nucleotide decreased its chromatographic mobility in the organic systems.

TABLE I

MOBILITIES OF i⁶Ap ON TLC IN SEVEN SOLVENT SYSTEMS

The compositions of the solvent systems and the detection of the migration of the components are described in Materials and methods. Mobilities are shown in terms of R_F values; the marker dye used in chromatography was Orange G.

Compound	Cellulose support				Silica gel support		
	1	2	3	4	5	б	7
i ^s Ap	0.28	0.89	0.88	0.35	0.22	0.00	0.80
i ^s A	0,94	0.94	0,89	0.96	0,94	0.90	0.37
AMP	0.52	0.33	0.29	0.43	0.09	0.02	0.89
ADP	0.35	0.30	0.26	0.41	0.02	0.00	0.90
ATP	0.26	0.29	0.25	0.40	0.00	0.00	0.94
CMP	0.47	0.47	0,40	0.50	0.13	0.02	0.89
GMP	0.15	0.27	0.20	0.33	0.06	0.00	0.88
UMP	0.24	0.66	0.60	0.40	0.15	0.01	0.93
Dye	0.39	0.99	1.00	0.86	0.33	0.17	0.96

The electrophoretic mobilities of i⁶Ap, i⁶A, and the standard nucleotides in two systems on two different supports are shown in Table II. The presence of the phosphate group on i⁶Ap conferred an electrophoretic mobility in relation to the non-mobile nucleoside i⁶A. On Whatman No. 1 paper the mobilities of i⁶Ap in both systems of electrophoresis were only slightly greater than those of AMP; whereas on Whatman DE-81 (DEAE-cellulose) the mobilities were over fourfold those of AMP.

The hypermodified nucleotide i⁶Ap has characteristic chromatographic and electrophoretic mobilities in the nine systems described (Tables I and II). Positive analysis would not require use of all the systems. The authors would, however, put considerable weight on the electrophoretic analysis that has shown distinctively different mobilities of i⁶Ap on cellulose (Whatman No. 1) as compared to DEAE-

TABLE II

MOBILITY OF is a DURING ELECTROPHORESIS IN TWO SYSTEMS ON TWO SUPPORTS

The compositions of the solvent systems and the detection of the migration of the compounds are described in Materials and methods. Mobilities are shown in terms of R_F values relative to AMP ($R_F = 1.00$). The marker dye used in electrophoresis was Xylene Cyanol FF.

Compound	Whatmai paper	n No. 1	Whatman DE-81 paper		
	pH 3.5	pH 1.7	pH 3.5	pH 1.7	
i ⁶ Ap	1.58	1.29	4.13	4.68	
i ⁶ A	0.49	-0.05	0.14	not	
				determined	
AMP	1.00	1.00	1.00	1.00	
ADP	0.83	1.10	2.45	4.23	
ATP	0.38	0.38	3.29	6.02	
CMP	0.96	1.06	0.72	1.11	
GMP	1.05	1.06	1.77	1.49	
UMP	1.28	1.43	2.22	5.32	
Dye	0.87	0.64	1.56	3.44	

cellulose (Whatman DE-81) with reference to AMP. If i⁶Ap is isolated from cell cultures grown in a medium containing [³²P]phosphate, then its presence in nanogram quantities could be detected by analysis using these systems^{16,19-21}.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance of Charles Rodi and support of an N.I.H. grant (1-RO1-CA16327-02) to Paul F. Agris and a summer research grant from the American Association for the Advancement of Science to Edward R. Sargent.

REFERENCES

- 1 R. Jones, Jr., J. T. Grace, Jr., A. Mittelman and M. W. Woodruff, Proc. Amer. Ass. Cancer Res., 9 (1968) 35.
- 2 T. Diamantstein, B. Wagner and A. S. Bhargara, FEBS Lett., 15 (1971) 225.
- 3 M. P. Rathbone and R. H. Hall, Cancer Res., 32 (1970) 1647.
- 4 Y. Rustum and I. Mihich, Cancer Res., 32 (1972) 1315.
- 5 D. Suk, C. L. Simpson and E. Mihien, Cancer Res., 30 (1970) 1429.
- 6 D. Y. Divekar, M. H. Fleysher, H. K. Slocum, L. N. Kenny and M. T. Hakala, Cancer Res., 32 (1972) 2530.
- 7 R. C. Gallo, S. M. Hecht, J. Whang-Peng, Jr. and S. O'Hopp, *Biochim. Biophys. Acta*, 281 (1972) 488.
- 8 J. D. Hare and B. Hacker, Physiol. Chem., 4 (1972) 275.
- 9 G. S. Johnson, M. D'Armiento and R. A. Carchman, Exp. Cell Res., 85 (1974) 47.
- 10 C. M. Smith, L. J. Fontenell, M. Lelanne and J. F. Henderson, Cancer Res., 34 (1974) 463.
- 11 G. L. Tritsch, Cancer Res., 33 (1973) 310.
- 12 Y. M. Rustum and H. S. Schwartz, Biochem. Pharmacol., 23 (1974) 2469.
- 13 T. P. Zimmerman and L. C. Chu, Biochem. Pharmacol., 23 (1974) 2473.
- 14 R. Hall, The Modified Nucleosides in Nucleic Acids, Columbia University Press, New York, London, 1971.

15 J. Skoog and D. J. Armstrong, Ann. Rev. Plant Physiol., 21 (1970) 359.

- 16 D. Burns, C. Rodi and P. F. Agris, Cancer Biochem. Biophys., (1976) in press.
- 17 S. Nishimura, Prog. Nucleic Acids Res. Mol. Biol., 12 (1972) 49.
- 18 J. D. Smith, Methods Enzymol., 12 (1967) 350.
- 19 P. F. Agris, T. Powers, D. Söll and F. Ruddle, Cancer Biochem. Biophys., 1 (1975) 69.
- 20 P. F. Agris, Arch. Biochem. Biophys., 170 (1975) 114.
- 21 P. F. Agris, Nucleic Acids Res., 2 (1975) 1083.